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The N-body problem

ä Newton’s equations for N interacting bodies

ẋi (t) = vi (t), v̇i (t) = −
∑
j 6=i

∇V (xi (t)− xj (t)).

ä Newton or Coulomb potential

V (r) = ±1
r
.

ä For N >> 106: Fluid dynamics description.

ä For N large but not too much (N ∼ 106), a statistical description is more
appropriate. For galaxies, a collisionless kinetic description is the most
popular in astrophysics.
Distribution function of bodies: f (t , x , v). Stellar dynamics started to be
developed at the beginning of XX centuary.
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The classical Vlasov-Poisson equation

∂t f + v · ∇x f −∇xφf · ∇v f = 0, f (t = 0, x , v) = f0(x , v)

φf (t , x) =
γ

4π

∫
R3

ρf (t , y)

|x − y |dy , ρf (t , x) =

∫
R3

f (t , x , v)dv .

Poisson equation: ∆φf = γρf .

ä Gravitational systems, γ = +1: galaxies, star clusters, etc.

ä Systems of particles , γ = −1: charged particles with Coulomb
interactions.

ä Some extensions
Relativistic VP: replace v by v√

1+|v|2
:

Vlasov-Manev (1920): replace the interaction potential 1
|x−y| by

1
|x−y| + 1

|x−y|2 . Manev, 1920.

Vlasov-Einstein: Couple Vlasov with relativistic metrics, Einstein equations.
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Basic properties

ä Conservation of the energy: H(f ) = Ekin(f )− γEpot (f )

Ekin(f ) =
1
2

∫
R6
|v |2fdxdv , Epot (f ) =

1
2

∫
R3
|∇xφf |2dx

ä Conservation of the Casimir functionals
∫
R6

G(f )dxdv .

ä Galilean invariance: f solution =⇒ f (t , x + v0t , v + v0) is also a solution.

ä Scaling symmetry: f solution =⇒ µ

λ2 f
(

t
λµ
, x
λ
, µv

)
solution too.

ä In the case of spherically symmetric solutions f (t , |x |, |v |, x · v), the
angular momentum

∫
R6 |x × v |2fdxdv is also conserved.
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Cauchy Theory in the gravitational case

A key interpolation inequality:

Epot (f ) ≤ CEkin(f )a
(∫

f
)b (∫

f p
)c

for p ≥ pcrit

Existence of solution as long as the kinetic energy is controlled.

ä Classical VP: a = 1/2. Global existence: Arsen’ev 1975, Illner-Neunzert
1979, Horst-Hunze 1984, Diperna-Lions 1988, Pfaffelmoser 1989,
Lions-Perthame 1991, Schaeffer 1991, Loeper (2006), Pallard 2012, ...

ä Relativistic VP: a = 1. Blow-up in finite time is possible: Glassey-Schaeffer
1986.

ä Vlasov-Manev: a = 1. Blow-up in finite time is possible:
Bobylev-Dukes-Illner-Victory 1997.
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A class of steady states

v · ∇x f −∇xφf · ∇v f = 0.

In the plasma case (γ = −1) the only solution is 0. In the gravitational case,
the general resolution is an open question.

ä Isotropic galactic models:

f (x , v) = F
(
|v |2

2
+ φf (x)

)
, ∆φf (x) =

∫
R3

F
(
|v |2

2
+ φf (x)

)
dv .

ä Anisotropic models:

f (x , v) = F
(
|v |2

2
+ φf (x), |x × v |2

)
.

If spherical symmetry f := f (|x |, |v |, x · v), then the Jeans theorem
ensures that all spherically symmetric steady states are of this form
(Batt-Faltenbacher-Horst 86).

ä Two important examples are:
Polytropes: F (e) = C(e0 − e)p

+.
The King model: F (e) = α (exp(β(e0 − e))− 1)+.
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What Stability means?

ä The energy space:

Ej = {f such that ‖f‖Ej =

∫ (
1 + |v |2

)
fdxdv +

∫
j(f )dxdv <∞}.

ä A steady state f0 is said to be stable through the VP flow if for all ε > 0,
there exists η > 0 such that

‖f (0)− f0‖Ej < η =⇒ ∀t ≥ 0, ‖f (t)− f0‖Ej < ε.

f (t) being the solution to VP associated with the initial data f0.

ä Galilean invariance: orbital stability

∀t ≥ 0, ∃x0(t) ∈ R3, ‖f (t , ·+ x0(t), ·)− f0‖Ej < ε.

Physics literature: Antonov, Lynden-Bell (1960’), Doremus-Baumann-Feix
(1970’), Kandrup-Signet (1980’), Aly-Perez (1990’), ..., see Binney-Tremaine.

Mathematics literature: Two last decades: Wolansky, Guo, Rein, Dolbeault,
Lin, Hadzic, Sanchez, Soler, L-Méhats-Raphaël, Rigault, Fontaine ...
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Homogeneous steady states

A different important context: If periodic domain in space: Homogeneous
steady states:

f (x , v) = g0(|v |).

Asymptotic stability under Penrose conditions: Landau damping,
Mouhot-Villani.
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Linear Stability

f0(x , v) = F
(
|v |2

2
+ φ0(x)

)

ä Linearized VP around f0: f = f0 + g

∂tg + v · ∇x g −∇xφ0 · ∇v g = ∇xφg · ∇v f0

ä The linearized Casimir functional are preserved∫
χ

(
|v |2

2
+ φ0(x)

)
gdxdv

ä The linearized Hamiltonian is preserved

H(g) =

∫ (
|v |2

2
+ φ0

)
gdxdv .
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Linear stability

ä The Energy-Casimir functional:

Hj (f ) =

∫
|v |2

2
f − 1

2

∫
|∇xφf |2dx +

∫
j(f )dxdv

ä Second derivative around f0 with j ′ ◦ F = −Id :

A(g, g) =
1
2

∫
j ′′(f0)g2dxdv − 1

2

∫
|∇xφg |2dx .

ä This is preserved by the linearized VP flow.

ä Does A(g, g) control some strong norms of the perturbation g ?

ä Degeneracy due to translation invariance:

A (∂xi f0, ∂xi f0) = 0, i = 1, 2, 3.
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Linear stability - Antonov inequality

ä Aspherical perturbations, Second Antonov law (1960’). Any isotropic
equilibrium f0 = F

(
|v|2

2 + φ0(x)
)

with F ′ < 0 is stable under aspherical
perturbations and up to space translation schifts:

A(g, g) > 0, for all aspherical g with
∫

g∂xi f0dxdv = 0.

ä DOREMUS-FEIX-BAUMANN (1971): Any equilibrium
f0 = F

(
|v|2

2 + φ0(x)
)

with F ′ < 0 is stable under spherical perturbation.
The main tool: the so called Antonov’s inequality

A(g, g) ≥
∫

supp(f0)

ξ2

|F ′|
φ′0(r)

r
dxdv ,

for all spherically symmetric g such that∫
χ

(
|v |2

2
+ φ0(x), |x × v |2

)
g = 0, ∀χ,

or equivalently g = v · ∇xξ −∇xφ0 · ∇vξ, for some ξ.
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Statements of the linear stability results

ä GENERAL PERTURBATIONS All isotropic steady states

f0(x , v) = F
(
|v |2

2
+ φ0(x)

)
which are decreasing functions of the microscopic energy are stable

under general perturbations, up to space translation shifts.

ä SPHERICAL PERTURBATIONS All anisotropic steady states

f0(x , v) = F
(
|v |2

2
+ φ0(x), |x × v |2

)
which are decreasing functions of the microscopic energy are stable
under spherical perturbations.

ä Optimal: Non spherical perturbations of anisotropic steady states may
give instabilities, Binney-Tremaine.
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A general strategy in a variational approach

A subclass of steady states: minimizers of some functional preserved by the
flow under constraints also preserved by the flow.

ä Consider a variational problem of the form:

inf
|f |L1 = M, ....

H(f ) +

∫
j(f ), j convex.

ä Existence of the infimum and of the minimizers: interpolation inequalities
+ compactness of a particular minimizing sequence.

ä Minimizers (denoted by f0) are steady states: Euler-Lagrange equations
are

|v |2

2
+ φ0(r) + j ′(f0) = λ on the support of f0

∆φ0 =

∫
R3

(j ′)−1
(
λ− |v |2/2− φ0(x)

)
+

dv .

ä Radial symmetry of the minimizers. Two ways: Gidas-Ni-Nirenberg
theorem or case of equality in Riesz rearrangement inequalities.
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Link between stability and variational approaches

Compactness of all minimizing sequences =⇒ Stability of the set of
minimizers.

Minimizing sequence:
∫

fn → M1 and H(fn) +
∫

j(fn) → I(M1) as n→∞.

Scheme of a proof (contradiction argument):

ä Let f n(0)→ f0 in the energy space, with ‖f n(tn)− f0‖ > ε, for some tn.

ä Conservation of the Hamiltonian and of the constraints, ∀t :

H(f n(t)) = H(f n(0))→ H(f0)

f n(tn) is a minimizing sequence and then strong compactness implies

f n(tn)→ a minimizer

ä If one has uniqueness of the minimizer then a contradiction.

ä Natural instabilities: Galilean invariance. Initial data f0(x , v + v0) leads to
f0(x + v0t , v + v0) =⇒ Orbital stability is compactness up to translation

shifts only.
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The one constraint approach

Minimize the Energy-Casimir functional under the constraint of a given mass.

inf
|f |L1 = M

[
H(f ) +

∫
j(f )

]
= I(M).

ä Existence of the infimum: use the interpolation inequality (valid for
p > 9/7) and j(t) ≥ Ctp

H(f ) ≥ Ekin − C
(∫

j(f )

)1/(3p−3)

E1/2
kin +

∫
j(f ).

H(f ) ≥ −C
4

(∫
j(f )

)2/(3p−3)

+

∫
j(f ),

which is bounded from below if and only if p > 5/3.

ä The original range of p (which is p > 9/7), can be recovered as follows:
replace

∫
j(f ) by

(∫
j(f )
)7/3

. See also Guo-Rein (other variational pb).
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The one constraint approach – Compactness

ä As a first step, let us prove the compactness of spherically symmetric
minimizing sequences. fn:

‖fn‖L1 → M, H(fn) +

∫
j(fn)→ I(M).

Weak compactness in Lp , p > 5/3: fn converges weakly to f in Lp.

Spherical symmetry =⇒ strong convergence of the potential energy (local

compactness + explicit decay of the potential energy)

I(M) is a strictly decreasing function of M, by scaling arguments.

I(‖f‖L1 ) ≤ H(f ) +
∫

j(f ) ≤ I(M) by lower semi-continuity.
Saturation of the constraints, and strong convergence of fn in the energy
space to f which is a minimizer.

ä The general case when fn is not spherically symmetric, is based on the
well-known concentration-compactness lemma, Lions 1984: one gets
Compactness up to translations. Scaling arguments are important in the
analysis!
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Stability and uniqueness of the minimizer

ä We then get orbital stability of the set of minimizers. Examples are
polytropes or generalized polytropes but NOT the King model .

ä One could think that the uniqueness or the isolatedness of the
minimizers is necessary. In fact it is not! Note that the uniqueness of the
minimizers fails in general.

ä Use the rigidity of the flow.
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A uniqueness lemma - The rigidity of the VP flow

Uniqueness Lemma (L- Méhats and Rigault, 2012)

Consider two distribution functions of the form

f1(x , v) = F
(
|v |2

2
+ ψ1(x)

)
, f2(x , v) = F

(
|v |2

2
+ ψ2(x)

)
,

where the common profile F is strictly decreasing and the potentials are
spherically symmetric and nondecreasing.

If f1 and f2 are equimeasurable then f1 = f2

This implies that two equimeasurable minimizers are equal.

ä This is quite general result because it does not use the Euler Lagrange
equation satisfied by the minimizers, but rather the rigidity of the flow
(equimeasurability).

ä It can be applied to relativistic contexts, with Poisson or Manev
potentials, and with arbitrary (but finite) number of constraints.
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The insufficiency of variational approaches

Consider the set of all spherically symmetric solutions to

∆ψα =

∫
j ′−1

(
−|v |

2

2
− ψα(x)

)
dv , ψα(0) = α, α < 0.

Then the corresponding potential of a steady state is

φα(x) = ψα(x)− ψα(+∞).

We denote the corresponding steady state by fα.

ä Any minimizer is an element of this family: take a mass M > 0, the
corresponding minimizer f of the one constraint problem is of the form

fα = j ′−1
(
λ− |v |

2

2
− φ(x)

)
.

Then set α = φ(0)− λ: we have ψα(x) = φ(x)− λ and −λ = ψα(+∞).

ä However, not all the steady states fα are minimizers.
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The Lieb-Yau variational principle

ä The Lieb-Yau principle (1987): the mass M(α) is decreasing in α along
the minimizers

ä Consequence 1: If α 7→ M(α) is decreasing then all the fα are
minimizers.

ä Consequence 2: If α 7→ M(α) is not decreasing then all the fα are not
minimizers.

Remark: For polytropic profiles j(f ) = f p, it is easy to show that M(α) is
decreasing, so all steady states are minimizers.
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Numerical counterexample

Consider the function j(f ) from [Schaeffer 2004]:

j ′(f ) =


c1 f 4 if 0 ≤ f ≤ 0.25

c2 f 0.01 if 0.25 ≤ f ≤ 4

c3 f 2 if 4 ≤ f

Then from numerical simulations, one observes that:

ä The function M(α) is not decreasing.

ä The one constraint problem does not cover all steady states and displays
non uniqueness for some mass M∗1 .



beamer-tu-logo

GVP models and Linear stability Non linear stability: variational approaches. A general approach to non linear stability

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

1.2

alpha

m
a
s
s

Mass profile M(α)

0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1
One constraint problem

mass

E
n
e
rg

y
−

C
a
s
im

ir

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2
One constraint problem (zoom)

mass

E
n
e
rg

y
−

C
a
s
im

ir
Non uniqueness



beamer-tu-logo

GVP models and Linear stability Non linear stability: variational approaches. A general approach to non linear stability

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

1.2

alpha

m
a
s
s

Mass profile M(α)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1
One constraint problem

mass

E
n
e
rg

y
−

C
a
s
im

ir

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2
One constraint problem (zoom)

mass

E
n

e
rg

y
−

C
a

s
im

ir

In red: minimizers of the 
    one−constraint problem

In blue: steady states that
             are not minimizers



beamer-tu-logo

GVP models and Linear stability Non linear stability: variational approaches. A general approach to non linear stability

The two constraints problem 1

inf
‖f‖L1 = M, ‖j(f )‖L1 = Mj

H(f ) = I(M,Mj ).

ä The two-constraints problem provides stability of a two-parameters class
of minimizers which, for all j , contains the set provided by one constraint
problem.

ä In fact, there are some Casimir functions j for which, these two sets are
the same: polytropes.

But there are some for which the one constraint set is strictly included in
the two-constraints set. The difference between the two sets may be an
open set of steady states.

ä The two-constraint problem is still not sufficient to recover all the
decreasing steady states because

of the assumptions j(t) ≥ tp, p > 9/7, and
it can be shown numerically that it does not cover all the steady states with a
given profile.

1L- Méhats-Raphaël, 2008, 2009
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Statement of the stability result

(i) f0(x , v) = F
(
|v|2

2 + φ0(x)
)

is C0 and compactly supported.

(ii) F is C1 on ]−∞, e0[ with F ′ < 0 and, on [e0,+∞[, F (e) = 0.

Theorem (L, Méhats, Raphaël. 2012)

Orbital stability of f0. For all ε > 0, for all M > 0, there exists η > 0 such that
the following holds true. Let fin ∈ L1 ∩ L∞, with fin ≥ 0 and |v |2fin ∈ L1, be
such that

‖fin − f0‖L1 < η, H(fin) ≤ H(f0) + η ‖fin‖L∞ < ‖f0‖L∞ + M,

then there exists a translation shift z(t) such that the corresponding weak
solution f (t) to VP satisfies: ∀t ≥ 0,

‖(1 + |v |2)(f (t , x , v)− f0(x − z(t), v)‖L1(R6) < ε.

A first idea would be to introduce a variational problem with an infinite number
of constraints. Not sure that this covers all the steady sates considered here.
Rather try to control directly the distribution function by using Hamiltonian
and all the Casimirs.
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Equimeasurability and Schwarz rearrangement

ä Equimeasurability: consider the set Eq(f0) of nonnegative functions
f ∈ L1 ∩ L∞ that are equimeasurable with f0:∫

G(f (x , v))dxdv =

∫
G(f0(x , v))dxdv , ∀G

or

µf (λ) = meas{f (x , v) > λ} = meas{f0(x , v) > λ} = µf0 (λ), ∀λ ≥ 0.

ä The standard Schwarz symmetrization. Let f ∈ L1(Rd ), then there
exists a unique nonincreasing function f ∗ ∈ L1(Rd ) of |x |, such that f ∗ is
equimeasurable with f :

f ∗(x) = f ] (|Bd (0, |x |)|) , f ] is the pseudo inverse of µf .

ä if f is a solution of the Vlasov system then:

f (t)∗ = f (0)∗.
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Two main steps in the original proof

ä Reduce the Hamiltonian to a functional of φ only:

H(f )−H(f0) ≥ J (φf )− J (φ0)− C‖f ∗ − f ∗0 ‖L1 .

and get Local quantitative control of the potential:

inf
z∈R3
‖∇φf −∇φ0(· − z)‖2

L2 ≤ C [H(f )−H(f0) + ‖f ∗ − f ∗0 ‖L1 ]

For all f ∈ E such that φf is in a neighborhood U of φ0.

ä Local compactness of the full distribution function:
Let fn be any sequence in the energy space such that φfn is in U.
Assume that

f ∗n → f ∗ in L1, H(fn)→ H(f0).

Then there exists a sequence zn ∈ R3 such that

‖(1 + |v |2)(fn(x , v)− f0(x − zn, v)‖L1(R6) → 0.
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Rearrangement with respect to the microscopic energy.

Let φ(x) be a potential field.
Let f ∈ L1 ∩ L∞(R6), then we may define its rearrangement with respect to

e(x , v) =
|v |2

2
+ φ(x).

which we denote f ∗φ. It is

ä a nonincreasing function of |v|
2

2 + φ(x);

ä such that f ∗φ ∈ Eq(f ).

Caracterisation: Our steady states are fixed points of this transformation

f ∗φ0
0 = f0
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Rearrangement with respect to the microscopic energy.

EXPLICIT CONSTRUCTION OF f ∗φ

f ∗φ(x , v) := f ]
(

aφ
(
|v |2

2
+ φ(x)

))
1 |v|2

2 +φ(x)<0

where aφ is the Jacobian function defined by

aφ(e) = meas
{

(x , v) ∈ R6 :
|v |2

2
+ φ(x) < e

}
=

8π
√

2
3

∫ +∞

0
(e − φ(x))3/2

+ dx
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The key monotonicity property

Lemma. Let f be a distribution function and φf its Poisson potential. Then

H(f ) ≥ H(f ∗φf ).

Proof.
Denote f̂ = f ∗φf . We have the decomposition

H(f ) = H(̂f ) +
1
2
‖∇φf −∇φ̂f‖

2
L2 +

∫ (
|v |2

2
+ φf

)
(f − f̂ )dxdv .

By construction of f ∗φf , the green term is nonnegative. This is reminiscent from the
following property of the standard Schwarz symmetrization:∫

R3
|x |f (x)dx ≥

∫
R3
|x |f ∗(x)dx .

which is a consequence of the Hardy-Littlewood inequality: Hardy, Littlewood,
Pólya: Inequalities, 1934. Lieb and Loss: Analysis.∫

f (x)g(x)dx ≤
∫

f ∗(x)g∗(x)dx .
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Reduction to a problem on the potential

H(f ) ≥ −C‖f ∗ − f ∗0 ‖+ J (φf ) +

∫ (
|v |2

2
+ φf

)
(f − f ∗φf )dxdv .

J (φ) =

∫ (
|v |2

2
+ φ(x)

)
f ∗φ0 (x , v)dxdv +

1
2
‖∇φ‖2

L2

Two points:
ä The red term J (φf ) only depends on the potential φf , and
J (φ0) = H(φ0). f ∗ is preserved by the flow.

ä The green term is nonnegative and vanishes when f = f ∗φf
0 .

H(f )−H(f0) ≥ J (φf )− J (φ0)− Invariants.
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Study of J and control of φ

J (φ) =

∫ (
|v |2

2
+ φ(x)

)
f ∗φ(x , v)dxdv +

1
2
‖∇φ‖2

L2

f ∗φ(x , v) = f ]0

(
aφ
(
|v |2

2
+ φ(x)

))
Proposition. The quantity J (φ)− J (φ0) controls the distance of φ to the

manifold of translated Poisson fieldsM =
{
φ0(·+ z), z ∈ R3}: in the

vicinity ofM, we have

J (φ)− J (φ0) ≥ C inf
z∈R3
‖∇φ−∇φ0(· − z)‖2

L2 with C > 0.

Proof. Based on a Taylor expansion. We differentiate twice the functional J with
respect to φ and study the Hessian: it is nonnegative, and coercive on spherical
functions.
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Control of the whole distribution function by compactness

H(f )−H(f0) ≥ −C‖f ∗− f ∗0 ‖+J (φf )− J (φ0)+

∫ (
|v |2

2
+ φf

)
(f− f ∗φf )dxdv .

ä Contro of the potential energy:

J (φ)− J (φ0) ≥ C inf
z∈R3
‖∇φ−∇φ0(· − z)‖2

L2 .

ä Compactness on the distribution function

If
∫ (

|v |2

2
+ φfn

)
(fn − f ∗φn

n )dxdv → 0, and f ∗n → f ∗0 in L1 then

fn strongly converges to f0 in L1.

ä However: No quantitative information about the perturbation. Goal is to
obtain a stability functional inequality of the generic form (up to
symmetries of the system)

‖f − f0‖2
L1 ≤ C (H(f )−H(f0) + C‖f ∗ − f ∗0 ‖L1 ) .
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Generalized rearrangement

ML, 2016.

Let σ be a nonnnegative measurable function of Ω ⊂ Rd , d ≥ 1 such that for
all e ∈ [0, emax )

meas{x ∈ Ω, σ(x) = e} = 0.

Let
aσ(e) = meas{x ∈ Ω, σ(x) < e}, aσ(emax ) = |Ω|.

For all f ∈ L1(Ω) , we define its rearrangement f ∗σ with respect to σ by

f ∗σ(x) = f ](aσ(σ(x)))1σ(x)<emax , ∀x ∈ Ω,

In particular f ∗σ is the only decreasing function of σ(x) which is
equimeasurable with f .
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Extended Hardy-Littlewood inequality

Let σ be as above. Then for any nonnegative functions f , g ∈ L1(Ω) we have∫
Ω

f (x)g(x)dx ≤
∫

Ω

f ∗σ(x)g∗σ(x)dx ,

In particular ∫
Ω

σ(x)(f (x)− f ∗σ(x))dx ≥ 0.

Does this nonnegative quantity control some strong norm ‖f − f ∗σ‖ ?

ä Weak answer: Saturating the inequality =⇒ Compactness

if
∫

Ω

σ(x)(fn(x)− f ∗σn (x))dx → 0, and if ‖f ∗σn − f0‖L1 → 0 then

‖fn − f0‖L1 → 0.

ä In the same spirit as in Burchard-Guo (JFA, 2004) concerning the Riez
rearrangement inequality.
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Refined HL inequalities

Refined HL inequality (ML-2016)

Let σ be as above and bσ the pseudo inverse of aσ. Then for any
nonnegative function f ∈ L1(Ω) we have

‖f − f ∗σ‖2
L1 ≤ K (f ∗, σ)

∫
Ω

σ(x)(f (x)− f ∗σ(x))dx ,

where K (f ∗, σ) is a constant depending only on f ∗ and σ. More generally, for
any nonnegative f , f0 ∈ L1(Ω)

(‖f − f ∗σ0 ‖L1 + ‖f0‖L1 − ‖f‖L1 )
2 ≤ K (f ∗0 , σ)

[∫
Ω

σ(x)(f (x)− f ∗σ0 (x))dx

+

∫
Ω

(
bσ[2µf0 (s)]βf∗,f∗0

(s)− bσ[µf0 (s)]βf∗0 ,f
∗(s)

)
ds
]
,

with βf ,g(s) = meas{x ∈ Ω : f (x) ≤ s < g(x)}.
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A particular case:

Case of Schwarz symmetrization:

Corollary (L-2016)

For all f ∈ L1(Rd ) ∩ L∞(Rd ), d ≥ 1, and all 0 ≤ m ≤ d , we have∫
Rd
|x |m(f (x)− f ∗(x))dx ≥ Kd‖f‖−m/d

L∞ ‖f‖−1+m/d
L1 ‖f − f ∗‖2

L1 ,

Kd = 2−1+m/d m2

4d2 |Bd |.

This covers the Marchioro-Pulvirenti estimate used for 2D-Euler (1985):
m = 2, and d = 2, and for homogeneous steady states for VP systems.

This estimate was used by Caglioti and Rousset to study long time behavior
of some N particles systems (2007): homogeneous steady states to
regularized VP, Euler 2D.
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Statement of stability inequalities for VP

The energy space

E = {f ∈ L∞ : f ≥ 0, ‖(1 + |v |2)f‖L1 <∞}.

Theorem: Quantitative stability (ML).

We have the following

i) There exist a constant K0 > 0 depending only on f0 such that or all f ∈ E

‖f − f0‖L1 ≤ ‖f ∗ − f ∗0 ‖L1 +

K0

[
H(f )−H(f0) + 2|φf0 (0)|‖f ∗ − f ∗0 ‖L1 + ‖∇φf −∇φf0‖

2
L2

]1/2
.

ii) There exist constants K0,R0 > 0 depending only on f0 such that, for all
f ∈ E satisfying

inf
z∈R3

(
‖φf − φf0 (.− z)‖L∞ + ‖∇φf −∇φf0 (.− z)‖L2

)
< R0,

there holds:

‖f − f0(.− zφf )‖L1 + ‖∇φf −∇φf0 (.− zφf )‖L2 ≤ ‖f ∗ − f ∗0 ‖L1 +

K0 [H(f )−H(f0) + K0‖f ∗ − f ∗0 ‖L1 ]
1/2

.
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Some perspectives

ä Non decreazing steady states?

ä Periodic domain in space: first non linear stability result for HMF (ML, A.
M. Luz, F. Méhats, 2017).

ä 2D Euler: similar structure as VP, but more difficult: partial result (ML,
2016.)

ä Vlasov-Einstein even in simplified geometries.

ä Refined rearrangement inequalities: Riesz, Polya-Zgo ...

ä Linear and non linear instabilities: strategy by Lin-Strauss for the linear
case completed by a non linear iterative method (as in Han-Kwan and
Hauray 2015-2016 for the homogenous steady states)
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